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Abstract. While notable progress has been made in specifying and learning
objectives for general cyber-physical systems, applying these methods to dis-
tributed multi-agent systems still pose significant challenges. Among these are
the need to (a) craft specification primitives that allow expression and inter-
play of both local and global objectives, (b) tame explosion in the state and
action spaces to enable effective learning, and (c) minimize coordination fre-
quency and the set of engaged participants for global objectives. To address these
challenges, we propose a novel specification framework that allows natural com-
position of local and global objectives used to guide training of a multi-agent
system. Our technique enables learning expressive policies that allow agents to
operate in a coordination-free manner for local objectives, while using a decen-
tralized communication protocol for enforcing global ones. Experimental results
support our claim that sophisticated multi-agent distributed planning problems
can be effectively realized using specification-guided learning. Code is provided
at https://github.com/yokian/distspectrl.
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1 Introduction

Reinforcement Learning (RL) can be used to learn complex behaviors in many different
problem settings. A main component of RL is providing feedback to an agent via a re-
ward signal. This signal should encourage desired behaviors, and penalize undesirable
ones, enabling the agent to eventually proceed through a sequence of tasks and is de-
signed by the programmer beforehand. A commonly used technique to encode tasks in
a reward signal is the sparse method of providing zero reward until a task is completed
upon which a non-zero reward is given to the agent. Because this procedure has the sig-
nificant shortcoming of delaying generating a useful feedback signal for a large portion
of the agent-environment interaction process, a number of alternative techniques have
been proposed [14,1].

Formulating a reward signal that reduces the sparsity of this feedback is known as
reward shaping. Often, this is done manually but a more general, robust method would
be to automatically shape a reward given a specification of desired behavior. SPECTRL
[5] proposes a reward shaping mechanism for a set of temporal logic specifications on

https://github.com/yokian/distspectrl
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a single-agent task that uses a compiled a finite-state automaton called a task monitor.
Reward machines [19,2,18] are another objective-specifying method for RL problems
that also define a finite automaton akin to the ones used in SPECTRL, with some subtle
differences such as the lack of registers (used by the task monitor for memory).

Distributed multi-agent applications however, introduce new challenges in automat-
ing this reward shaping process. Agents have their own respective goals to fulfill as well
as coordinated goals that must be performed in cooperation with other agents. While
the expressiveness of the language in SPECTRL lends itself, with minor extensions, to
specifying these kinds of goals, we require new compilation and execution algorithms
to tackle inherent difficulties in multi-agent reinforcement learning (MARL); these in-
clude credit assignment of global objectives and the presence of large state and action
spaces that grow as the number of agents increases. Learning algorithms for multi-agent
problems have often encouraged distribution as a means of scaling in the presence of
state and action space explosion. This is because purely centralized approaches have
the disadvantages of not only requiring global knowledge of the system at all times but
also induce frequent and costly synchronized agent control.

To address these issues, we develop a new specification-guided distributed multi-
agent reinforcement learning framework. Our approach has four main features. First,
we introduce two classes of predicates (viz. local and global) to capture tasks in a multi-
agent world (Sec. 4). Second, we develop a new procedure for generating composite
task monitors using these predicates and devise new techniques to distribute these mon-
itors over all agents to address scalability and decentralization concerns (Sec. 5). Third,
we efficiently solve the introduced problem of subtask synchronization (Sec. 6) among
agents via synchronization states in the task monitors. Lastly, we describe a wide class
of specification structures (Sec. 7) amenable to scaling in the number of agents and
provide a means to perform such a scaling (Sec. 8).

By using these components in tandem, we provide the first solution to composing
specifications and distributing them among agents in a scalable fashion within a multi-
agent learning scenario supporting continuous state and action spaces. Before present-
ing details of our approach, we first provide necessary background information (Sec. 2)
and formalize the problem (Sec. 3).

2 Background

Markov Decision Processes Reinforcement learning is a tool to solve Markov Deci-
sion Processes (MDPs). MDPs are tuples of the form 〈S, D,A, P,R, T 〉 where S ∈ Rn
is the state space, D is the initial state distribution, A ∈ Rm is the action space,
P : S × A× S → [0, 1] is the transition function, and T is the time horizon. A rollout
ζ ∈ Z of length T is a sequence of states and actions ζ = (s0, a0, ..., aT−1, sT ) where
si ∈ S and ai ∈ A are such that si+1 ∼ P (si, ai). R : Z → R is a reward function
used to score a rollout ζ.

Multi-Agent Reinforcement Learning A Markov game withN = {1, · · · , N} denot-
ing the set of N agents is a tupleMg = 〈N , {Si}i∈N , D, {Ai}i∈N , P, {Ri}i∈N , T 〉
where Ai, Ri define their agent-specific action spaces and reward functions. They are
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a direct generalization of MDPs to the multi-agent scenario. Let Sm = {Si}i∈N and
Am = {Ai}i∈N , then P : Sm×Am×Sm → [0, 1] is the transition function. A rollout
ζm ∈ Zm here corresponds to ζm = (s̄0, ā0, ..., āT−1, s̄T ) where s̄ ∈ Sm and ā ∈ Am.
We also define an agent specific rollout ζim ∈ Zim, ζim = (si0, a

i
0, ..., a

i
T−1, s

i
T ) where

si ∈ Si and ai ∈ Ai. D is the initial state distribution over Sm.
Agents attempt to learn a policy πi : Si → ∆(Ai) such that E

[∑
tR

i
t|πi, π−i

]
is

maximized, where ∆(Ai) is a probability distribution over Ai and π−i is the set of all
policies apart from πi. We use Π = {πi}i∈N to denote the set of all agent policies. For
simplicity, we restrict our formulation to a homogeneous set of agents which operate
over the same state (Si = SA) and action space (Ai = AA).

SPECTRL Jothimurugan et. al [5] introduce a specification language for reinforce-
ment learning problems built using temporal logic constraints and predicates. It is
shown to be adept at handling complex compositions of task specifications through the
use of a task monitor and well-defined monitor transition rules. Notably, one can en-
code Non-Markovian tasks into the MDP using the additional states of the automaton
(task monitor) compiled from the given specification.

The atomic elements of this language are Boolean predicates b defined as functions
of a state S with output JbK : S → B. These elements have quantitative semantics JbKq
with the relation being JbK(s) = True ⇐⇒ JbKq(s) > 0. Specifications φ are Boolean
functions of the state trajectory ζ = (s1, s2, ..., sT ). The specification language also
includes composition functions for a specification φ and Boolean predicate b, with the
language defined as

φ ::= achieve b | φ ensuring b | φ1; φ2 | φ1 or φ2

The description of these functions is as follows. achieve b is true when the trajectory
satisfies b at least once. φ ensuring b is true when b is satisfied at all timesteps in
the trajectory. φ1; φ2 is a sequential operator that is true when, in a given trajectory
ζ = (s1, s2, ..., sT ), ∃ k > 1 such that φ1(s1, ..., sk) is true and φ2(sk+1, ..., sT ) is true.
In other words, φ1; φ2 represents an ordered sequential completion of specification φ1
followed by φ2. Lastly, φ1 or φ2 is true when a trajectory satisfies either φ1 or φ2.

Given a specification φ on a Markov Decision Process 〈S,D,A, P, T 〉 (MDP) de-
fined using SPECTRL, a task monitor 〈Q,X,Σ,U,∆, q0, v0, F, ρ〉 (a finite state au-
tomaton [20]) is compiled to record the completion status of tasks with monitor states
Q; final monitor states F denote a satisfied trajectory. This is used to create an aug-
mented version of the MDP 〈S̃, s̃0, Ã, P̃ , R̃, T̃ 〉 with an expanded state, action space
and modified reward function . The task monitor provides a scoring function for trajec-
tories in the augmented MDP to guide policy behavior.

While SPECTRL has been shown to work with trajectory-based algorithms for rein-
forcement learning [12], it is not immediately evident how to translate it to common RL
algorithms such as DDPG [10] and PPO [16]. A simple solution would be to keep the
episodic format with a trajectory ζ = (s0, · · · , sT ) and assign the trajectory value of
SPECTRL (a function of ζ) to the final state transition in the trajectory sT−1 → sT and
zero for all other states. Importantly, this maintains the trajectory ordering properties of
SPECTRL in the episodic return (

∑T
t=0 rt).
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3 Problem Statement

Directly appropriating SPECTRL for our use case of imposing specifications on multi-
agent problems poses significant scalability issues. Consider the case

φa = achieve(reach(P )); achieve(reach(Q))

where Jreach(P )K = True when an agent reaches state P . To ease the illustration
of our framework, we assume that all agents are homogeneous, i.e. Si = SA,∀i ∈ N .
Now, the state space of the entire multi-agent system is S = (SA)N for N agents (we
omit m for perspicuity).

If the predicate reach was defined on the entire state S, it would yield a specifica-
tion forcing synchronization between agents. On the other hand, if reach was defined
on the agent state SA, then it would create a localized specification where synchroniza-
tion is not required. This would be akin to allowing individual agents to act indepen-
dently of other agent behaviors.

However, using a centralized task monitor for the localized predicate would cause
the number of monitor states to exponentially increase with the number of agents N
and subtasks K since the possible stages of task completion would be O(KN ).

To address this scalability issue, the benefits of task monitor distribution are appar-
ent. In the case of φa above, assume reach is defined on the local state space SA. If
each agent had a separate task monitor stored locally to keep track of the task comple-
tion stages, the new number of monitor states is now reduced to O(NK).

Consider an example of robots in a warehouse. A few times a day, all robots must
gather at a common point for damage inspection at the same time (akin to a global reach)
to minimize the frequency of inspection (an associated cost). To ensure satisfaction of
the entire specification, the reward given to an RL agent learning this objective should
capture both the global and local tasks. For example, if the global reach task for the
routine inspection is made local instead, the cost incurred may be larger than if it was a
synchronized global objective.

Main Objective Given a specification φ on a system of N agents, we wish to find
policies Π = {π1, · · · , πN} to maximize the probability of satisfying φ for all agents.
Formally, we seek

Π∗ ∈ arg max
π1,··· ,πN

Pr
ζm∼DΠ

[Jφ(ζm)K = True]

where DΠ is the distribution of all system rollouts when all agents collectively follow
policy set Π . We emphasize that φ acts on the entire rollout, φ : Zm → {0, 1} and
not in an agent-specific manner, φ′ : Zim → {0, 1}. This discourages agents from
attempting to simply satisfy their local objectives while preventing the system from
achieving necessary global ones.

4 SPECTRL in a Multi-Agent World

Unlike the single agent case, multi-agent problems have two major classes of objectives.
Agents have individual goals to fulfill as well as collective goals that require coordina-
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Fig. 1: Example Composite Task Monitor for specification φex (Sec. 4) with 4 task goals denoted
by Q,P,P’ and R where the agent starts at q0. Double circles represent final states while green
circles represent global states. The diagram removes a state between q1 and (q3, q4) as well as
self-loops for ease of explanation.

tion and/or global system knowledge. These individual goals are often only dependent
on the agent-specific state si while collective goals require full system knowledge s̄.

Consequently, for a multi-agent problem, we see the need for two types of predicates
viz. local and global. Local predicates are of the form plo : SA → B whereas global
predicates have the form pgl : S → B where B is the Boolean space. We introduce two
simple extensions of reach [5] to demonstrate the capabilities of this distinction.

Local predicates are defined with respect to each agent and represent our individ-
ual goals. As an example, closely related to the problems observed in SPECTRL, we
introduce the following local predicates for a state sa ∈ SA,

JreachloxK(sa) = (||sa − x||∞ < 1)

which represents reaching near location x in terms of the L∞ norm. Now to enforce
global restrictions, we introduce counterparts to these predicates that act on a global
state s̄ ∈ S.

Jreachglx̄K(s̄) = (||s̄− x̄||∞ < 1)

where we now have a set of locations x̄ ∈ S.
As in SPECTRL, each of these predicates b require quantitative semantics JbKq to

facilitate our reward shaping procedure. We define these semantics as follows:

– reachlo has the same semantics as reach in [5] yet is defined on space SA.

JreachloxKq(sa) = 1− d∞(sa, x)

where d∞(a, b) represents the L∞ distance between a and b with the usual exten-
sion to the case where b is a set.

– reachgl is defined on the state space S as

Jreachglx̄Kq(s̄) = 1− d∞(s̄, x̄)

We observe that the same composition rules can apply to these predicates and we
thus attempt to solve RL systems described with these compositions. As shown in
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Sec. 3, using a centralized SPECTRL compilation algorithm on the entire state space,
even for simple sequences of tasks, leads to an explosion in monitor states. We, there-
fore, distribute task monitors over agents to handle scalability. Furthermore, we also
need to change SPECTRL’s compilation rules to handle mixed objective compositions
such as1

φ = reachlo(P ); reachgl(Q); reachgl(R)

To compile these specifications into a usable format, we utilize a composite task
monitor as described in Sec. 5 and develop a new algorithm to achieve our goal. As an
example, see Fig. 1 depicting a task monitor whose specification is:

φex =reachgl(P
′) or reachlo(Q); [reachlo(P ) or reachgl(R)]

Here, we have 4 task goals denoted by P,Q,R and P ′. The agents all start at the root
node q0. States q2, q3 and q4 are all final states in the task monitor while q2 and q4 are
global monitor states. As shown in Sec. 6, q0 and q1 are a synchronization states. While
it may seem that agents only require coordination at global states, it is also necessary
for the agents to have the same task transition at these synchronization states as well.

5 Compilation Steps

Given a specification φ and the Markov game Mg , we create a task monitor M that
is distributed among agents by making agent-specific copies. This is used to create
an augmented Markov gameM′g = 〈N , {S̃A}i∈N , D̃, {ÃA}i∈N , P̃ , {R̃i}i∈N , T 〉 on
which the individual agent policies are trained.

Create Composite Task Monitor When the types of specifications are divided into
two based on the domain, the solution can be modeled with a composite task monitor
Mφ = 〈Q, X̃, Σ̃, Ũ , ∆̃, q0, v0, F, ρ〉. As in SPECTRL, Q is a finite set of monitor states.
X̃ = Xl ∪Xg is a finite set of registers that are partitioned into Xl for local predicates
and Xg for global predicates. These registers are used to keep track of the degree of
completion of the task at the current monitor state for local and global tasks respectively.

We describe below how to use the compiled composite task monitor to create an
augmented Markov game M′g . Each S̃A in M′g is an augmented state space with an
augmented state being a tuple (sA, q, v) ∈ SA ×Q × V where V ∈ RX and v ∈ V is
a vector describing the register values.

∆̃ = ∆l∪∆g houses the transitions of our task monitor. We require that: i) different
transitions are allowed only under certain conditions defined by our states and register
values; and, ii) furthermore, they must also provide rules on how to update the register
values during each transition. To define these conditions for transition availability, we
use Σ̃ = Σl ∪ Σg where Σl is a set of predicates over SA × V and Σg is a set of
predicates over S ×V . Similarly, Ũ = Ul ∪Ug where Ul is a set of functions ul : SA×
V → V and Ug is a set of functions ug : S×V → V . Now, we can define ∆̃ ⊆ Q×Σ̃×

1 We omit achieve in achieve(reachlo(P )) and achieve(reachgl(P )) from here on to re-
duce clutter; this specification is implied when we compose reach(P ) with ; and or.



DistSPECTRL: Distributing Specs. in MARL Systems 7

Ũ×Q to be a finite set of transitions that are non-deterministic. Transition (q, σ, u, q′) ∈

∆̃ is an augmented transition either representing (si, q, v)
ai|Π−i−−−−→ ((si)′, q′, ul(s

i, v))

or the form (s̄, q, v)
ai|Π−i−−−−→ (s̄′, q′, ug(s, v)) depending on whether σ ∈ Σl or σ ∈

Σg respectively. Let δl ∈ ∆l represent the former (localized) and δg ∈ ∆g the latter
(global) transition types. Here Π−i denotes the policy set of all agents except agent i.
Lastly, q0 is the initial monitor state and v0 is the initial register value (for all agents),
F ⊆ Q is the set of final monitor states, and ρ : S×F ×V → R is the reward function.

Copies of these composite task monitors M are distributed over agents N to form
the set {M i}i∈N . These individually stored task monitors are used to let each agent
i ∈ N keep track of its subtasks and the degree of completion of those subtasks by
means of monitor state qi and register value vi.

Create Augmented Markov Game From our specification φ we create the augmented
Markov game M′g = 〈N , {S̃A}i∈N , D̃, {ÃA}i∈N , P̃ , {R̃i}i∈N , T 〉 using the com-
piled composite task monitor M . A set of policies Π̃∗ that maximizes rewards inM′g
should maximize the chance of the specification φ being satisfied.

Each S̃A = SA × Q × V and D̃ = ({s0}i∈N , q0, v0). We use ∆ to augment
the transitions of P with monitor transition information. Since ∆ may contain non-
deterministic transitions, we require the policies Π̃ to decide which transition to choose.
Thus ÃA = AA × Aφ where Aφ = ∆ chooses among the set of available transitions
at a monitor state q. Since monitors are distributed among all agents in N , we denote
the set of current monitor states as q̄ = {qi}i∈N and the set of register values as v̄ =
{vi}i∈N . Now, each agent policy must output an augmented action (a, δ) ∈ ÃA with
the condition that δl = (q, σl, ul, q

′) is possible in local augmented state s̃a = (sa, q, v)
if σl(sa, v) is True and δg = (q, σg, ug, q

′) is possible in global augmented state s̃ =

(s̄, q̄, v̄) if σg(s̄, v) is True. We can write the augmented transition probability P̃ as,

P̃ ((s̄, q, v), (a, (q, σ, u, q′)), (s̄′, q′, u(s̄, v)))) = P (s̄, a, s̄′)

for transitions δg ∈ ∆g with (σ, u) = (σg, ug) and transitions δl ∈ ∆l with (σ, u) =
(σl, ul). Here, we let ul(s̄, v) = ul(s

i, v) for agent i since si is included in s̄. An
augmented rollout ζ̃m where

ζ̃m = ((s̄0, q̄0, v̄0), ā0, ..., āT−1, (s̄T , q̄T , v̄T ))

is formed by these augmented transitions. To translate this trajectory back into the
Markov gameMg we can perform projection proj(ζ̃m) = (s̄0, ā0, ..., āT−1, s̄T , ).

Determine Shaped Rewards Now that we have the augmented Markov game M′g
and compiled our composite task monitor, we proceed to form our reward function that
encourages the set of policies Π to satisfy our specification φ. We can perform shaping
in a manner similar to SPECTRL’s single-agent case on our distributed task monitor.
Crucially, since reward shaping is done during the centralized training phase, we can
assume we have access to the entire augmented rollout namely s̃t = (s̄t, q̄t, v̄t) at any
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given t ∈ [0, T ]. From the monitor reward function ρ, we can determine the weighting
for a complete augmented rollout as

R̃i(ζ̃m) =

{
ρ(s̄T , q

i
T , v

i
T ), if qiT ∈ F

−∞ otherwise

Theorem 1. (Proof in Appendix Sec. F.) For any Markov game Mg , specification φ
and rollout ζm ofMg , ζm satisfies φ if and only if there exists an augmented rollout ζ̃m
such that i) R̃i(ζ̃m) > 0 ∀ i ∈ N and ii) proj(ζ̃m) = ζm.

The R̃i specified is −∞ unless a trajectory reached a final state of the composite
task monitor. To reduce the sparsity of this reward signal, we transform this into a
shaped reward R̃is that gives partial credit to completing subtasks in the composite task
monitor.

Define for a non-final monitor state q ∈ Q \ F , function α : S ×Q× V → R.

α(s̄, q, v) = max
(q,σ,u,q′)∈∆,q 6=q′

JσKq(s̄, v)

This represents how close an augmented state s̃ = (s̄, q, v) is to transition to another
state s̃′ with a different monitor state. Intuitively, the larger α is, the higher the chance
of moving deeper into the task monitor. In order to use this definition on all σ, we
overload σl to also act on elements s̄ = {si}i∈N ∈ S by yielding for agent i, the value
σl(s̄) = σl(s

i).
Let Cl be a lower bound on the final reward at a final monitor state, and Cu being an

upper bound on the absolute value of α over non-final monitor states. Also for q ∈ Q,
let dq be length of the longest path from q0 to q in the graphMφ (ignoring the self-loops
in ∆) and D = maxq∈Q dq . For an augmented rollout ζ̃m let s̃k = (s̄k, q

i
k, v̄) be the

first augmented state in ζ̃m such that qik = qik+1 = · · · = qiT . Then we have the shaped
reward,

R̃is(ζ̃m) =

{
maxk≤j<T α(s̄j , q

i
T , vj) + 2Cu · (dqiT −D) + Cl if qiT /∈ F

R̃i(ζ̃m) otherwise
(1)

Theorem 2. (Proof in Appendix Sec. F.) For two augmented rollouts ζ̃m, ζ̃ ′m,
(i) if R̃i(ζ̃m) > R̃i(ζ̃ ′m), then R̃is(ζ̃m) > R̃is(ζ̃

′
m), and (ii) if ζ̃m and ζ̃ ′m end in distinct

non-final monitor states qiT and (qiT )′ such that dqiT > d(qiT )′ , then R̃is(ζ̃m) ≥ R̃is(ζ̃ ′m).

6 Sub-task Synchronization

Importance of Task Synchronization Consider the following example specification:

φ′1a = reachlo(P ) or reachgl(Q)

where P,Q are some goals. To ensure flexibility with respect to the possible acceptable
rollouts within φ′1a, the individual agent policies πi are learnable and the task transition
chosen is dependent on the agent-specific observations. This flexibility between agents
however, adds an additional possible failure method in achieving a global specification
- if even a single agent attempts to fulfill the global objective while the others decide to
follow their local objectives, the specification would never be satisfied.
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Fig. 2: Overview of the DistSPECTRL process for task synchronization. Branching in the task
monitor diagram denotes potential non-deterministic choices between future tasks (such as in
φex). Left to right represents the order of policy actions over a trajectory. Green states represent
the current monitor state of that agent.

Identifying Synchronization States As emphasized above, task synchronization is an
important aspect of deploying these composite task monitors in the Markov gameMg

with specification φ. We show the existence of a subset of monitor states Sync ∈ Q
where in order to maintain task synchronization, agents simply require a consensus on
which monitor transition δ = (q, σ, u, q′) to take. If we use Qg to symbolize the set of
global monitor states, viz. all q ∈ Q such that ∃(q, σg, ug, q′) ∈ ∆g , then we see that
Qg ⊆ Sync. A valid choice for q ∈ Sync with q /∈ Qg is all branching states in the
graph of Mφ with a set refinement presented in the Appendix (Sec. D).

During training, we enforce the condition that when an agent i has monitor state
qit ∈ Sync, it must wait for time t1 > t such that qjt1 = qit ∀j ∈ N and then choose
a common transition as the other agents. This is done during the centralized training
phase by sharing the same transition between agents based on a majority vote.

7 Multi-Agent Specification Properties

Consider a specification φ and let N = {1, . . . , N} be the set of all agents with ζm
being a trajectory sampled from the environment. φ(ζm, n) is used to denote that the
specification is satisfied on ζm for the set of agents n ⊆ N (i.e. Jφ(ζm, n)K == True).

MA-Distributive Many specifications pertaining to MA problems can be satisfied in-
dependent of the number of agents. At its core, we have the condition that a specification
being satisfied with respect to a union of two disjoint sets of agents implies that it can
be satisfied on both sets independently. Namely if n1, n2 ⊂ N with n1 ∩ n2 = ∅ then
an MA-Distributive specification satisifies the following condition:

φ(ζm, n1 ∪ n2) =⇒ φ(ζm, n1) ∧ φ(ζm, n2)
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MA-Decomposable Certain specifications satisfy a decomposibility property partic-
ular to multi-agent problems that can help in scaling with respect to the number of
agents.

Say ∃ k ∈ {1, . . . , N − 1} such that

φ(ζm,N ) =⇒ φk(ζm,N ) =
∧

j∈{1,...,J}

φ(ζm, nj)

where

nj ⊂ N , k ≤ |nj | < N , J = bN
k
c ,
⋂
j

nj = ∅ ,
⋃
j

nj = N

with bc representing the floor function. Each nj is a set of at least k unique agents and
{nj}j forms a partition over N .

We then call the specification φ MA-Decomposable with decomposibility factor k.
Here φk can be thought of as a means to approximate the specification φ to smaller
groups of agents within the set of agentsN . Provided we find a value of k, we can then
use this as the basis of our MA-Dec scaling method to significantly improve training
times for larger numbers of agents.

Theorem 3. (Proof in Appendix Sec. F.) All MA-Distributive specifications are also
MA-Decomposable with decomposability factors k ∈ Z+, 1 ≤ k < N .

Notably all compositions of reachgl and reachlo within our language are MA-Distributive
and are thus MA-Decomposable with factor k = 2. 2 This is far from a general prop-
erty however, as one can define specifications on N robots such as achieve("collect x
fruits") where each robot can carry at most x/N fruits . In this case, no single subset of
agents can satisfy the specification as the total capacity of fruits would be less than x
and the specification is neither MA-Distributive nor MA-Decomposable.

8 Algorithm

Training Agents learn πi(si, vi, qi) = (ai, δi) on the augmented Markov gameM′g
where si, vi, qi are agent-specific state, register value and task monitor state respec-
tively. Since training is centralized, all agent task monitors receive the same global
state. Based on our discussion in Sec. 6, if an agent is in any given global monitor state,
we wait for other agents to enter the same state, then do the arg max task transition
for all agents in the same state. In addition, at the synchronization states (Sec. 6), we
perform a similar process to select the task transition. These trained augmented policies
are then projected into policies that can act in the originalMg .

2 It is satisfied with k = 1 as well but this is the trivial case where reachgl and reachlo are
equivalent.
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Fig. 3: Example MA-Dec Scaling Process with N = 10, k = 2, f = 2 on an MA-Decomposable
spec φ with decomposability factor 2. At Stage 1, g1 = 2 to start with 5 groups. Next g2 =
fg1 = 4 which forms 2 groups. Finally at Stage 3, g3 = fg2 = 8 which forms one group (N ).

Scaling MA-Decomposable Specifications Our algorithm for scaling based off the
MA-Decomposable property is shown in Alg. 1 (refer Appendix) and we name it MA-
Dec scaling. Essentially, we approximate the spec. φ by first independently considering
smaller groups within the larger set of agents N and try to obtain a policy satisfying
φ on these smaller groups. By progressively making the group sizes larger over stages
and repeating the policy training process while continuing from the previous training
stage’s policy parameters , we form a curriculum that eases solving the original problem
φ on all agents N .

In Fig. 3 we demonstrate MA-Dec scaling for N = 10 agents on a spec. φ which is
MA-Decomposable with decomposability factor 2. For this example we set the scaling
parameters k = 2 and f = 2. Initially we have a min. group size g1 = 2 and this is
changed to g2 = 4 and g3 = 8 from setting the scaling factor. We increment the stage
number every time all the groups of a stage have satisfied the entire specification φw.r.t.
their group. While separating training into stages, agents must be encouraged to move
from stage i to stage i+ 1. To ensure this, we need to scale rewards based on the stage.
We chose a simple linear scaling where for stage number i and time step t, each agent
receives reward ri,t = ick + CTMi,t where CTMi,t is the original composite task
monitor reward at stage i and ck ∈ R is a constant. By bounding the reward terms such
that rewards across stages are monotonically increasing (ri,t < ri+1,t′) we can find a
suitable ck to be (2D + 1)Cu (refer Appendix Sec. B) where the terms are the same as
in Eq. 1.

From setting the initial min. group size g1 and scaling factor f , we get the total
number of learning stages (Ts) as Ts = blogf (N) − logf (k)c = O(logf (N)). We
build the intuition behind why MA-Dec scaling is effective in the Appendix (Sec. B),
by describing it as a form of curriculum learning.

Deployment Policies are constructed to proceed with only local information (si, vi, qi).
Since we cannot share the whole system state with the agent policies during deployment
yet our composite task monitor requires access to this state at all times, we allow the
following relaxations: 1) Global predicates σg(s̄, v) enabling task monitor transitions
need global state and access it during deployment. 2) Global register updates ug(s̄, v)
are also a function of global state and access it during deployment.

In order to maintain task synchronization, agents use a consensus based communi-
cation method to decide task monitor transitions at global and synchronization states. If
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agents choose different task transitions at these monitor states, the majority vote is used
as done during training.

9 Experiment Setup

Our experiments aim to validate that the use of a distributed task monitor can achieve
synchronization during the deployment of multiple agents on a range of specifications.

In addition, to emphasize the need for distribution of task monitors to alleviate the
state space explosion caused by mixing local and global specifications, we include ex-
periments with SPECTRL applied to a centralized controller.

Lastly, we provide results showing the efficacy of the MA-Dec scaling approach
for larger numbers of agents when presented with a specification that satisfies the MA-
Decomposability property (Sec. 7).

As a baseline comparison, we also choose to run our algorithm without giving poli-
cies access to the monitor state (no_mon). These are trained with the same shaped
reward as DistSPECTRL. We also provide a Reward Machine baseline (RM) for φ1
with continuous rewards since φ1 is similar to the ’Rendezvous’ specification in [13].

Environment Our first set of experiments are done on a 2D Navigation problem with
N = 3 agents. The observations (S ∈ R2) used are coordinates within the space with
the action space (A ∈ R2) providing the velocity of the agent.

The second set of experiments towards higher dimension 3D benchmarks, represent
particle motion in a 3D space. We train multiple agents (N = 3) in the 3D space (S ∈
R3) with a 3D action space (A ∈ R3) to show the scaling potential of our framework.

The final set of experiments were on a modern discrete-action MARL benchmark
built in Starcraft 2 [15] with N = 8 agents (the "8m" map). Each agent has 14 discrete
actions with a state space S ∈ R80 representing a partial view of allies and enemies.

Algorithm Choices For the scaling experiments (Fig. 6) we used the 2D Navigation
problem with horizon T = 500 and the scaling parameters3 k = 2 and f = 2. We
also choose a version of PPO with a centralized Critic to train the augmented Markov
Game noting that our framework is agnostic to the choice of training algorithm. The
current stage is passed to the agents as an extra integer dimension. For other experiments
we chose PPO with independent critics as our learning algorithm. Experiments were
implemented using the RLLib toolkit [9].

Specifications (2D Navigation) The evaluated specifications are a mix of local and
global objectives. The reach predicates have an error tolerance of 1 (the L∞ distance
from the goal).

(i) φ1 = reachgl(5, 0); reachgl(0, 0) , (ii) φ2 = φ1; reachgl(3, 0)
(iii) φ3 = reachlo(5, 0); reachgl(0, 0); reachgl(3, 0)
(iv) φ4 = [reachlo(3, 0) or reachlo(5, 10)] ;φ3

3 While we could start with k = 1, we set k = 2 to reduce the number of learning stages.
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(SC2) φsc represents ’kiting’ behaviour and is explained further in the Appendix (Sec.
E). φsc = φsca ;φsca ;φsca where φsca = away_from_enemygl; shooting_rangelo;
(3D Environment ) φa = reachlo(5, 0, 0); reachgl(0, 0, 0); reachgl(3, 0, 0) is the
specification considered within X-Y-Z coordinates.

Fig. 4: Satisfaction percentages on specifications φ1,φ2,φ3 and φ4 with N = 3 agents. The
shaded regions show the maximum and minimum achieved over 5 separate evaluation runs

Fig. 5: Specification satisfaction percentages (left) for the StarCraft 2 specification φsc withN =
8 agents and (right) for the 3D Navigation experiments on specification φa.

Fig. 6: Specification satisfaction percentages for N = 10 agents on φ1 (left) and N = 6 agents
on φ3 (right) comparing the MA-Dec scaling (red) to centralized SPECTRL (blue) and vanilla
DistSPECTRL (green) i.e. without scaling enhancements.



14 J. Eappen and S. Jagannathan

Table 1: Specification satisfaction percent-
ages on convergence for Fig.4,5

Spec. DistSPECTRL no_mon SPECTRL

φ1 99.62 91.17 100.00
φ2 99.05 00.00 97.38
φ3 97.59 94.77 96.81
φ4 97.31 00.00 90.78

φa 98.49 00.00 99.60

φsc 86.79 00.00 00.00

Table 2: Specification satisfaction percentages on
convergence for Fig.6, (Scaling to more Agents)

Spec. / # Agents MA-Dec DistSPECTRL SPECTRL

φ3/N =6 94.09 0.00 0.00

φ1/N =6 97.83 80.67 98.96
φ1/N =10 97.03 72.30 99.28

10 Results

Handling Expressive Specifications The experiments in Fig. 4 demonstrate execution
when the task monitor predicates have access to the the entire system state. This pro-
vides agents with information sufficient to calculate global predicates for task monitor
transitions. The overall satisfaction percentage is reported with the value 0 being an
incomplete task to 1.0 being the entire specification satisfied.

While SPECTRL has often been shown to be more effective [5,6] than many existing
methods (e.g. RM case) for task specification, the further utility of the monitor state in
enhancing coordination between agents is clearly evident in a distributed setting. The
task monitor state is essential for coordination as our baseline no_mon is often unable
to complete the entire task (even by exhaustively going through possible transitions) and
global task completion requires enhanced levels of synchronization between agents.

From Table 1 we see that upon convergence of the learning algorithm, the agent
is able to maintain a nearly 100% task completion rate for our tested specifications, a
significant improvement in comparison to the no_mon case, showing the importance of
the task monitor as part of a multi-agent policy.

Benefits of Distribution Over Centralization The centralized SPECTRL graphs (blue
curves in Figs. 4, 5, 6) show that while distribution may not be necessary for certain
specifications with few local portions (e.g. φ2), concatenating them will quickly lead
to learning difficulties with larger number of agents (Fig. 5, φsc and Fig. 6, φ3). This
difficulty is due in large part to state space explosion of the task monitor in these cases
as is apparent by the significantly better performance of our distributed algorithm. We
also remind the reader that a centralized algorithm is further disadvantageous in MARL
settings due to the added synchronization cost between agents during deployment.

Scaling to Larger State Spaces The results in Fig. 5 show promise that the DistSPECTRL
framework can be scaled up to larger dimension tasks as well. The 3D environment re-
sults exhibits similar behavior to the 2D case with the no_mon showing difficulty in
progressing beyond the local tasks in the larger state space with sparser predicates. The
φsc results also show promise in defining relevant predicates and achieving general
specifications for modern MARL benchmarks.
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Scaling to More Agents Table 2 and Fig. 6 demonstrate the benefits of MA-Dec scal-
ing for larger N when presented with an MA-Decomposable specification. At smaller
ranges of N as well as less complex combinations of mixed and global objectives, the
effect of MA-Dec scaling is less pronounced. We observe that the stage based learning
is crucial for a even simple mixed specification like φ3 with as little as N = 6 agents.

11 Related Work

Multi-agent imitation learning [17,7,23] uses demonstrations of a task to specify desired
behavior. However in many cases, directly being able to encode a specification by means
of our framework is more straightforward and removes the need to have demonstrations
beforehand. Given demonstrations, one may be able to infer the specification [21] and
make refinements or compositions for use in our framework.

TLTL[8] is another scheme to incorporate temporal logic constraints into learning
enabled controllers, although its insufficiency in handling non-Markovian specifications
led us to choose SPECTRL as the basis for our methodology. Reward Machines (RMs)
[19,2,18] are an automaton-based framework to encode different tasks into an MDP.
While RMs can handle many non-Markovian reward structures, a major difference is
that SPECTRL starts with a logical temporal logic specification and includes with the
automaton the presence of memory (in the form of registers capable of storing real-
valued information). Recent work [6] shows the relative advantages SPECTRL-based
solutions may have over a range of continuous benchmarks.

Concurrent work has introduced the benefits of a temporal logic based approach
to reward specification [4]. While experimental results are not yet displayed, the con-
vergence guarantees of the given algorithm are promising. Since we use complex non-
linear function approximators (neural networks) in our work, such guarantees are harder
to provide. Reward Machines have also been explored as a means of specifying behavior
in multi-agent systems [13] albeit in discrete state-action systems that lend themselves
to applying tabular RL methods such as Q-learning. One may extend this framework to
continuous systems by means of function approximation but to the best of our knowl-
edge, this has not been attempted yet. Similar to our synchronization state, the authors
use a defined local event set to sync tasks between multiple agents and requires being
aware of shared events visible to the other agents.

In the same spirit as our stage-based approach, transferring learning from smaller
groups of agents to larger ones has also been explored [22]. Lastly, while we chose
PPO to train the individual agents for its simplicity, our framework is agnostic to the
RL algorithm used and can be made to work with other modern multi-agent RL setups
[11,3] for greater coordination capabilities.

12 Conclusion

We have introduced a new specification language to help detail MARL tasks and de-
scribe how it can be used to compile a desired description of a distributed execution in
order to achieve specified objectives. Our framework makes task synchronization real-
izable among agents through the use of: 1) Global predicates providing checks for task
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completion that are easily computed, well-defined and tractable; 2) A monitor state to
keep track of task completion; and 3) Synchronization states to prevent objectives from
diverging among agents.
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A Global Task Monitor Construction

We refer readers to the local specification compilation rules of SPECTRL (defined in
their Appendix). We highlight the main differences with mixed objectives here.

For a specification φ let Qg the set of states with global predicates in φ. Note that
Qg ⊆ Sync as mentioned in Sec 6. Here we consider a φ to be global if it contains any
global predicates.

achieve b when b is a global predicate

Add both states to global states Qg .

φ1; φ2 when φ2 is global

If φ2 has an initial global state or (q0)φ2
∈ (Sync)φ2

then the transition from the final
state of φ1 to φ2 is also global. If qa ∈ Fφ1 then qa ∈ Qg .

φ1; φ2 when φ1 is global

It is the same as the local case with Qg = (Qg)φ1

φ1; φ2 when both φ1, φ2 are global

It is the same as the local case with Qg = (Qg)φ1 ∪ (Qg)φ2

φ1or φ2 when φ2 is global

Without loss of generality, if φ2 contains global states then the common start state (as
part of the compilation rules of or) is a synchronization state. Qg = (Qg)φ1

∪ (Qg)φ2
.

B Scaling MA Specifications

MA-Dec Scaling can be thought of as a form of curriculum learning for MA-Distributive
specifications. We progressively narrow down the valid space of parameters that satisfy
the specification φk by increasing the value of k by a positive integer factor f > 1.
Consider a set of N = 10 agents and an MA-Distributive specification φ. φ is also
MA-Decomposable with factor 8 by Thm. 3. Since the spec. is MA-Distributive as well
φ8(η,N ) =⇒ φ4(η,N ) =⇒ φ2(η,N ).

Intuitively, as shown in Fig. 7, the policy parameterΠθ satisfying φ8 will also satisfy
φ4 and φ2 as groups of 8 agents can either be considered two groups of 4 agents or four
groups of 2 agents.

Thus we position the parameter spaces as shown, and in the first stage attempt to
find a parameter within the largest region satisfying φ2(N ). As the learning progresses,
the curriculum narrows down the desired search space until we obtain the parameters
satisfying the specification φ(N ).
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Fig. 7: Scaling intuition for N = 10, k = 2, f = 2. We represent the policy parameter space and
the respective placement of parameters that satisfy φk for various values of k. The arrows show
the direction we proceed searching for parameters in our scaling process.

Fig. 8: Specification satisfaction percentages for N = 6 agents on φ1 comparing the MA-Dec
scaling method (red) to centralized SPECTRL (blue) and vanilla DistSPECTRL (green).

Calculating Scaling constant ck

We want all rewards at stage i to be less than the rewards at stage i+ 1 to prevent local
optima from arising where an agent is not incentivized to progress to the next stage.
Assuming that the final reward at all stages is also upper bounded by Cu (as is α).
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Algorithm 1: MA-Dec Scaling
Given Specification φ that is MA-Decomposable with factor k and agent setN of N

agents.
Given a function train(φ, nj) that trains a policy satisfying φ (up to a performance

metric) from a previous set of policy parameters for the group of agents nj .
Function set_groups(g,N):

// g ∈ Z+ i.e. an integer g ≥ 1
// Makes partition ofN with minimum group size g
if g > |N | then

return {N}
else

Initialize j = 1, J = bN
g
c

foreach a ∈ N do
if |nj | < g or j == J then

nj ← nj ∪ a
else

j ← j + 1
nj = {}

end
return {nj}j

Initialize Agent Policies Π , i = 1, g1 = k
Initialize {nj}j =set_groups(g1,N)
while |n1| ≤ |N | do

foreach nj ∈ {nj}j do
Run Π ← train(φ, nj) independently of agentsN \ nj updating the policies

of nj .
end
gi+1 = fgi.
if gi+1 > |N | then

// Already reached Final Stage with n1 == N
return

{nj}j ← set_groups(gi+1,N)
i← i+ 1

end

ri,t ≤ri+1,t′ ∀t, t′

=⇒ ick + CTMi,t ≤(i+ 1)ck + CTMi+1,t′

=⇒ max(ick + CTMi,t) ≤min((i+ 1)ck + CTMi+1,t′)

Since ck ∈ R is a constant we get

max(CTMi,t)−min(CTMi+1,t′) ≤ck
=⇒ Cu − (−2DCu) ≤ck

Thus a suitable ck is (2D + 1)Cu.
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C Implementation

Computational resources

All experiments were run on a Intel Xeon Gold 2.10 Ghz 64-core machine with 252 GB
of RAM. Individual experiments used no more than 16 cores at a time with experiments
involving a hyperparameter search taking 2 cores each.

Hyperparameters

A single 2 layer neural network with 256 nodes each and a tanh activation function was
used. The learning rate was varied from 1× 10−3 to 1× 10−5 over 2× 107 iterations.

We used a grid search on hyperparameters for all experiments.

Table 3: Hyperparameters used for grid search

Hyperparameter Ranges

Batch Size [10000, 20000]
Initial Learning Rate [10−3, 10−4, 10−5]
Entropy Coefficient [0, 0.00176]

Metrics

The specification satisfaction is reported with value from 0 being no sub-task completed
to 1.0 being the entire specification satisfied. For more details on the compilation rules
we refer readers to Sec. A.

Fig. 9: Specification satisfaction percentages for the task monitor shown in Fig. 1 with φex =
reachgl(10, 10); or [reachlo(3, 0); [reachlo(10, 10) or reachgl(5, 0)]].
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D Subtask Synchronization

Another example to further strengthen this notion of task synchronization is

φ′2a = [reachlo(P ); reachgl(Q) ] or [reachlo(P
′); reachgl(Q

′) ]

Here, if an agent assumed that it only needed to choose between the two local objec-
tives reachlo(P ) and reachlo(P

′) and not look further into the future for the presence
of global objectives, a task mismatch would occur between agents who are in different
branches of the task monitor i.e. the sub-specification [reachlo(P ); reachgl(Q) ] vs.
[reachlo(P

′); reachgl(Q
′) ]. We see that global objectives deeper in the sequence of

specifications require prior synchronization to reaching the stage just before task com-
pletion. Thus, we see there is a marked need for task synchronization among agents as
specifications become increasingly complex.

The identification of local synchronization states q ∈ Sync , where q /∈ Qg is as
follows:

1. Select all branching states in the graph of Mφ.
2. Remove those with all branches local and disconnected.

That is, all monitor states in these branches that only have local transitions δl.
3. Remove all those whose branches rejoin at some state (the rejoin point) and have

all paths from branching state to the rejoin point not include any global monitor
states.
That is, if we consider only the subgraph of Mφ starting from the branching state,
the rejoin point should have no ancestors which are global monitor states.

E Environments

2D Environment

The environment follows first order dynamics in a 2D space (S ∈ R2). The action space
(A ∈ R2) provides the velocity of the agent in the space. Agents are initialized in a line
below their reference goals at a Y-coordinate uniformly sampled between (2, 3).

3D Environment

The environment follows first order dynamics in a 3D space (S ∈ R3). The action
space (A ∈ R3) provides the velocity of the agent in the space. Agents are initialized
below the goal in the X-Y plane and with a random Y,Z coordinate uniformly sampled
between (2, 3).

StarCraft 2

Starcraft 2 [15] experiments used the "8m" map with 8 controllable marines and 8
enemy AI-controlled marines. Each agent had state space S ∈ R80 and 14 discrete
actions. away_from_enemy defines a predicate that is true when the agent cannot be
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shot by the enemy. shooting_range defines a predicate that is true when the agent
can shoot the enemy (but can also be shot as well). away_from_enemygl being true
implies that all the agents are together away from the enemy at once (in a synchronized
manner).

To define these predicates we make use of two indicators provided by the Starcraft
2 environment. The first being shooting_range_ind ∈ {0, 1} which is 1 when the
enemy within shooting range and 0 otherwise. The other is dist_to_enemy ∈ [0, 1]
being the normalized distance to an enemy which is 0 when the enemy is not visible
(the observation radius is larger than the shooting range) .

The quantitative semantics of these new predicates are then

Jaway_from_enemyKq =(1− shooting_range_ind) ∗ (ε)+

shooting_range_ind ∗ (dist_to_enemy− ε)
Jshooting_rangeKq =(1− shooting_range_ind) ∗ (−ε)+

shooting_range_ind ∗ (dist_to_enemy− ε/10)

where ε ∈ [0, 1] is a real-value representing the error tolerance set to 0.5 in the Starcraft
experiments.

To augment our discrete action space Markov Game for the centralized SPECTRL
comparison, we included an additional agent with access to the full system state. This
centralized controller was used to choose between the available task monitor transi-
tions.

F Proofs

Proof of Theorem 1

The proof follows the exact outline as in SPECTRL since the language composition and
compilation rules are equivalent in the necessary steps. We repeat their arguments here
for clarity. First, the following lemma follows by structural induction:

Lemma 1. For σ ∈ Σ, JσK(s, v) = True ⇐⇒ JσKq(s, v) > 0.

Next, let GM denote the underlying state transition graph of a task monitor M .
Then,

Lemma 2. The task monitors constructed by our algorithm satisfy the following prop-
erties:

1. The only cycles in GM are self loops.
2. The finals states are precisely those states from which there are no outgoing edges

except for self loops in GM .
3. In GM , every state is reachable from the initial state and for every state there is a

final state that is reachable from it.
4. For any pair of states q and q′, there is at most one transition from q to q′.
5. There is a self loop on every state q given by a transition (q,>, u, q) for some

update function u where > denotes the true predicate.
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The first three properties ensure progress when switching from one monitor state to
another. The last two properties enable simpler composition of task monitors. The proof
follows by structural induction. Theorem 1 now follows by structural induction on φ and
Lemmas 1 and 2.

Proof of Theorem 2

i) Let ζ̃m, ζ̃ ′m be two augmented rollouts such that R̃i(ζ̃m) > R̃i(ζ̃ ′m).

– Case A. Both ζ̃m, ζ̃
′
m end in final monitor states. Here R̃is(ζ̃m) = R̃i(ζ̃m) >

R̃i(ζ̃ ′m) = R̃is(ζ̃
′
m).

– Case B. ζ̃m ends in a final monitor state but ζ̃ ′m does not. Here

R̃is(ζ̃m) = max
k≤j<T

α(s̄j , q
i
T , vj)

+ 2Cu(dqiT −D) + Cl

≤ max
k≤j<T

α(s̄j , q
i
T , vj)− 2Cu + Cl (dqiT −D ≤ −1)

≤Cl (Cu ≥ α,Cu ≥ 0)

≤R̃i(ζ̃m) (Cl ≤ R̃i ∀ i ∈ N )

=R̃is(ζ̃m) (qiT ∈ F )

– Case C. ζ̃m ends in a non-final monitor state. Here R̃i(ζ̃m) = −∞ and R̃i(ζ̃ ′m) =
−∞ as well.

(ii) if ζ̃m and ζ̃ ′m end in distinct non-final monitor states qiT and (qiT )′ such that
dqiT > d(qiT )′ , then R̃is(ζ̃m) ≥ R̃is(ζ̃ ′m).

Here the trajectories vary in only one agent’s monitor state.

R̃is(ζ̃m) = max
k≤j<T

α(s̄j , q
i
T , vj) + Cl

+ 2Cu(dqiT −D)

≥ max
k≤j<T

α(s̄j , q
i
T , vj) + Cl (dqiT ≥ d

′
qiT

+ 1)

+ 2Cu(d′qiT
−D) + 2Cu

≥Cu + Cl (Cu > |α| =⇒ Cu > −α)

+ 2Cu(d′qiT
−D)

≥ max
k≤j<T

α(s̄′j , (q
i
T )′, v′j) + Cl (Cu > α)

+ 2Cu(d′qiT
−D)

=R̃is(ζ̃
′
m)
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Proof of Theorem 3

Given φ being MA-Distributive, then for two disjoint sets of agents n1, n2 ⊂ N

φ(ζm, n1 ∪ n2) =⇒ φ(ζm, n1) ∧ φ(ζm, n2)

Given a value k ∈ Z+, 1 ≤ k < N we can create a group of agent sets {nj}j∈1,...,J
forming a partition of N with minimum group size k using the set_groups(k,N )
function in Alg.1. Now

φ(ζm,
⋃

j∈1,...,J
nj) =⇒ φ(ζm, n1) ∧ φ(ζm,

⋃
j∈2,...,J

nj)

=⇒ φ(ζm, n1) ∧ φ(ζm, n2) ∧ φ(ζm,
⋃

j∈3,...,J
nj)

=⇒
∧

j∈{1,...,J}

φ(ζm, nj)

Thus φ is also MA-Decomposable with factors k ∈ Z+, 1 ≤ k < N .
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